
Lecture 16: Encrypting Long Messages

Encrypting Long Messages



Objective

Earlier, we saw that the length of the secret-key in one-time
pad has to be at least the length of the message being
encrypted
Our objective in this lecture is to use smaller secret-keys to
encrypt longer messages (that is secure against
computationally bounded adversaries)

Encrypting Long Messages



Recall

Suppose f : {0, 1}2n → {0, 1}2n is a one-way permutation
(OWP)
Then, we had see that the function
G : {0, 1}n × {0, 1}n → {0, 1}2n+1 defined by

G (r , x) = (r , f (x), 〈r , x〉)

is a one-bit extension PRG

Let us represent f i (x) as a short-hand for

i-times︷ ︸︸ ︷
f (· · · f (f (x))· · ·).

f 0(x) shall represent x .
By iterating the construction, we observed that we can create
a stream of pseudorandom bits by computing
bi (r , x) =

〈
r , f i (x)

〉
(Note that, if we already have f i (x)

stored, then we can efficiently compute f i+1(x) from it)
So, the idea is to encrypt long messages where the i-th bit of
the message is masked with the bit bi (r , x)

Encrypting Long Messages



Encrypting Long Messages

Without loss of generality, we assume that our objective is to
encrypt a stream of bits (m0,m1, . . . )

Gen(): Return sk = (r , x)
$←{0, 1}2n, where r , x ∈ {0, 1}n

Alice and Bob, respectively, shall store their state variables:
stateA and stateB . Initially, we have stateA = stateB = x
Encsk,stateA(mi ): ci = mi ⊕ 〈r , stateA〉, and update
stateA = f (stateA), where sk = (r , x)
Decsk,stateB (c̃i ) = m̃i = c̃i ⊕ 〈r , stateB〉, and update
stateB = f (stateB), where sk = (r , x)
Note that the i-th bit is encrypted with bi (r , x) and is also
decrypted with bi (r , x). So, the correctness holds. This
correctness guarantee holds as long as the order of the
encryptions and the decryptions remain identical.
Note that each bit bi (r , x) is uniform and independent of all
previous bits (for computationally bounded adversaries). So,
the scheme is secure against all computationally bounded
adversaries

Encrypting Long Messages


